SKT 24

Stud Thyristor

Line Thyristor	
SKT 24	

Features

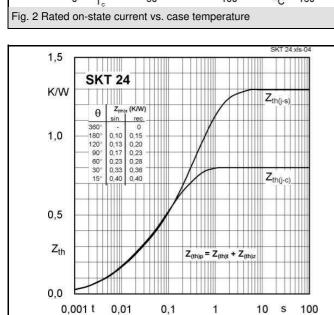
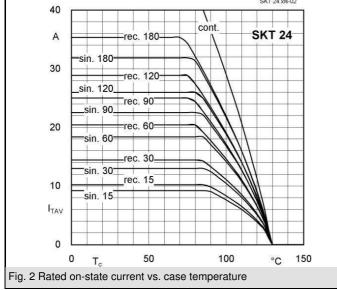
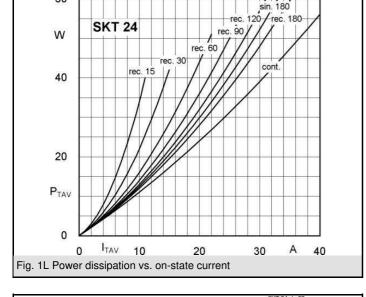
- Hermetic metal case with glass
 insulator
- Threaded stud ISO M6 or UNF 1/4-28
- International standard case

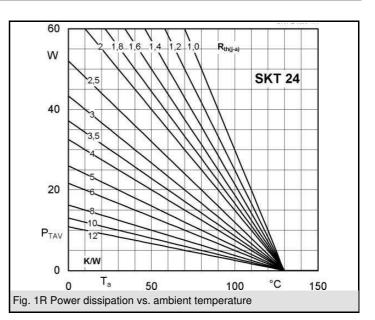
Typical Applications*

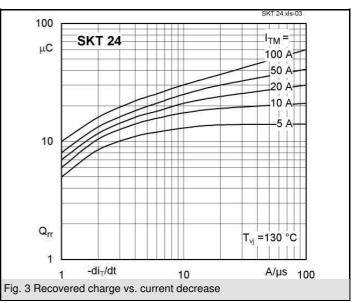
- DC motor control
 (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
 AC controllers
- AC controllers (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \leq 400$ V: R = 100 $\Omega/5$ W, C = 0,1 μF
- Available with UNF thread 1/4-28 UNF2A, e. g. SKT 24/12E UNF

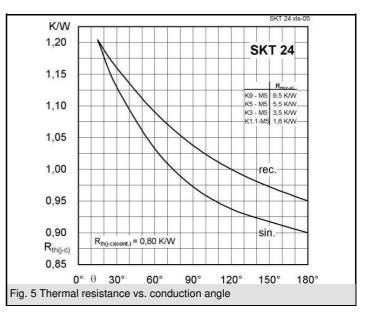
V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 50 A (maximum value for continuous operation)		
V	V	I _{TAV} = 24 A (sin. 180; T _c = 95 °C)		
500	400	SKT 24/04D		
900	800	SKT 24/08D		
1300	1200	SKT 24/12E ¹⁾		
1500	1400	SKT 24/14E		
1700	1600	SKT 24/16E ¹⁾		
1900	1800	SKT 24/18E		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	22 (29)	А
I _D	K5; T _a = 45 °C; B2 / B6	22 / 30	А
	K3; T _a = 45 °C; B2 / B6	28 /40	А
I _{RMS}	K5; T _a = 45 °C; W1C	24	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	450	А
	T _{vj} = 130 °C; 10 ms	380	А
i²t	T _{vj} = 25 °C; 8,35 10 ms	1000	A²s
	T _{vj} = 130 °C; 8,35 10 ms	720	A²s
V _T	T _{vi} = 25 °C; I _T = 75 A	max. 1,9	V
V _{T(TO)}	T _{vj} = 130 °C	max. 1	V
r _T	T _{vj} = 130 °C	max. 10	mΩ
I _{DD} ; I _{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 8	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t _q	T _{vj} = 130 °C ,	80	μs
I _H	$T_{vj} = 25 \text{ °C}; \text{ typ. / max.}$	80 / 150	mA
ΙL	T _{vj} = 25 °C; typ. / max.	150 / 300	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj}^{3} = 25 \text{ °C; d.c.}$	min. 100	mA
V_{GD}	T _{vj} = 130 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 130 °C; d.c.	max. 3	mA
R _{th(j-c)}	cont.	0,8	K/W
R _{th(j-c)}	sin. 180	0,9	K/W
R _{th(j-c)}	rec. 120	0,95	K/W
R _{th(c-s)}		0,5	K/W
T _{vj}		- 40 + 130	°C
T _{stg}		- 40 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	2,5	Nm
а		5 * 9,81	m/s²
m	approx.	13	g
Case		B 2	

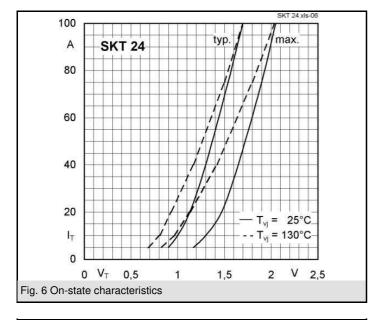




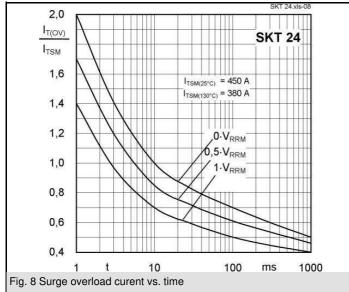

Fig. 4 Transient thermal impedance vs. time

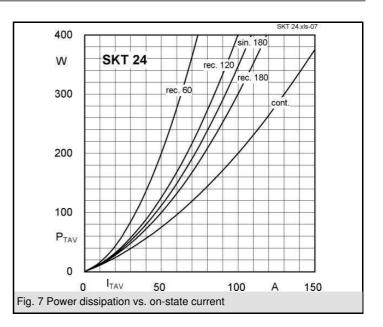


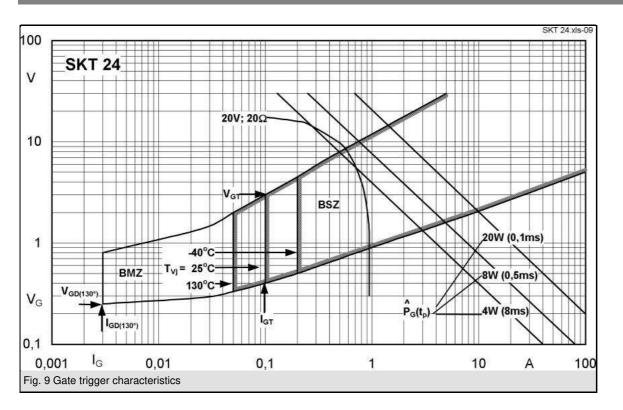


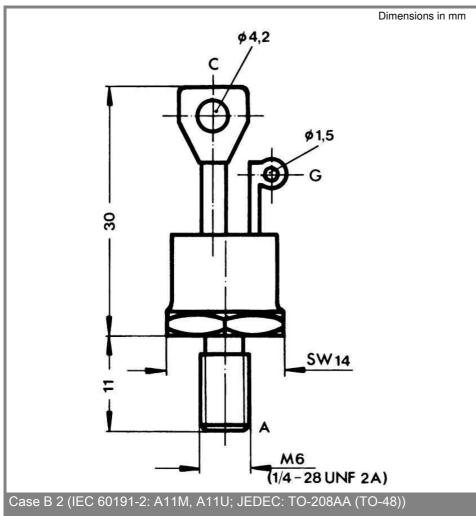
60


SKT 24 xis-11








SKT 24

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKT 24

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.